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Introduction



  

CP-Violation in the Standard Model

● Standard Model allows violation of CP via complex phase   
    in the CKM matrix. 

● Manifests in 2 ways: Direct and Indirect

● Indirect CPV arises because weak eigenstates ≠ CP 
eigenstates: e.g.                               where        and        
are CP-even and CP-odd resp.

● Also direct CPV in decays of CP eigenstates: 



  

Brief interlude: lattice methods

● Discretize QCD Lagrangian in Euclidean space on 
finite volume.

● Integrate fermions out of path integral:

● U are gauge links:
● Sample configurations of links from probability 

distribution Z using Monte Carlo methods.



  

Lattice measurements

● Measure amplitudes on each link configuration and 
average.

● Ground state of system extracted in limit of large 
time separation.

● Excited state with energy                   requires multi-
exponential fits to time dependence – typically very 
noisy and should be avoided if possible!



  

● Theoretically                                     where                 
are perturbative Wilson coefficients and        
contains the non-perturbative QCD contribution.

● Both factors are renormalization scheme dependent 
but their product is scheme invariant.

● On lattice we can measure       through

 
● Modern calculations at %-scale accuracy.

Indirect CP-Violation on the Lattice

● Indirect CPV measure     determined accurately 
from experiments:



  



  

              Decays
● Direct CP-violation first observed in               decays.

● Two types of decay:

with amplitude

with amplitude

●      is highly sensitive to BSM sources of CPV.

● Strong interactions very important – origin of the so-called  
                  rule: preference to decay to            final state.

● Direct CP-violation:

where

and     are strong scattering phase shifts.  



  

                  on the lattice
● Multi-particle states in a finite box very different 

from infinite-volume states:

● Until recently not known how to relate lattice 
amplitude to physical amplitude. [Lellouch&Luscher]

● Energy spectrum is volume-dependent; need large 
physical volume for realistic kinematics.

● Also need small lattice spacing to avoid large 
discretization errors.

● Large volume + small lattice spacing = expensive!
● Only recently become viable.



  

                       Calculation



  

Lattice Determination
● As with      , amplitude      is combination of 

renormalization-scheme dependent perturbative 
Wilson coeffs           and non-perturbative matrix 
elements            :

●

●     are weak effective four-quark operators.
● Renormalization performed non-perturbatively in 

intermediate regularization-independent momentum 
scheme (RI-MOM), matched to        at high energies 
to avoid perturbative truncation errors.



  

Achieving Physical Kinematics

●                          and                            : need moving 
pions in final state to conserve energy.

● Ground state of          system has stationary pions.
● As previously mentioned, extracting excited states is 

very hard. Can we avoid this? Yes!



  

● Instead impose antiperiodic BCs on d-quark propagator. 
Changes finite-volume momentum discretization:

 

Physical Kinematics

● Minimum d-quark momentum is          : charged pion ground 
state has momentum! But...

● For neutral pion the momenta can cancel, s.t. ground state is 
stationary. Desired state is            , so this does not work. 
However....

● Wigner-Eckart theorem:

● APBCs on d-quark break isospin symmetry allowing mixing 
between isospin states: however              is the only charge-2 
state hence it cannot mix.

 



  

 Results

● RBC & UKQCD recently published (arXiv:1111.1699) 
calculation of                  decay using:

● 2+1f domain wall fermions on a                         lattice with           
 

● Near physical pions:

● Energy conserving decays

● Determined           

● Large systematic error of which 75% is discretization error: 
 continuum limit needed.

● Currently generating multiple larger, finer lattices to get 
better control of this error.



  

                       Calculation



  

Challenges: part 1
● Measuring       is considerably more challenging.

● Measure both                            and                          . 

●      state has vacuum quantum numbers, hence there are 
disconnected diagrams:

● Need large statistics and many source positions (or A2A/AMA 
propagators) to resolve.

● With Blue Gene/Q resources we can now perform such 
calculations with large enough physical volumes.



  

● For                      the Wigner-Eckart trick cannot be used.

● If we stay with APBC on d-quarks, isospin-breaking would 
allow mixing between             and             final states.

● I=0 state needs moving       , but momentum cancels in       .

● Need to apply BCs that commute with isospin and produce 
moving       as well as       and      .

● Can we conceive boundary conditions that satisfy these criteria? 
Yes: G-parity.

Challenges: part 2



  

● G-parity is a charge conjugation followed by a 180 degree 
isospin rotation about the y-axis:

 

● Pions are all eigenstates with e-val -1, hence G-parity BCs make 
pion wavefunctions antiperiodic, with minimum 
momentum        .    

● G-parity commutes with isospin

G-Parity Boundary Conditions

Wiese, Nucl.Phys.B375, (1992)

Kim, arXiv:hep-lat/0311003 
(2003)



  

Kaons
●                calculation needs stationary     .

● Need an eigenstate with e-val +1 for periodic BCs and hence        
                  .

●                         is not a G-parity eigenstate.

● Introduce 'strange isospin' (   ): s-quark in doublet

● A neutral kaon-like state:

is an eigenstate of 'modified G-parity':                                with e-
val +1.    .   



  

Results: Pion Dispersion Relation
● Generated                      fully dynamical test ensembles with G-

parity BCs in 0,1,2 directions.

●



  

Results: Kaon Dispersion Relation
● Stationary kaon states demonstrated:



  

Results:         
●                        mixing amplitude shown to be independent as 

expected. These 4-quark effective vertices are similar to those 
used in                   calculation, hence this is a valuable 
demonstration. 



  

Conclusions and Outlook



  

Conclusions and Outlook

● Lattice calculations have the potential to lead to 
great breakthroughs in our understanding of kaon 
phenomenology, in particular CP-violation.

● In the near future we will begin generating G-parity 
ensembles with large physical volumes and physical 
quark masses for a calculation of the                         
amplitude.

● Combining with our existing measurement of the       
               amplitude will give the first ab initio 
determination of     . Could potentially lead to 
discovery of new BSM physics.



  

Extra Slides



  

Gauge Field Boundary Conditions

●  -field becomes         across the boundary. Consider a bilinear on 
the boundary under a gauge transformation     :

● Link must transform as

● Link parallel to boundary on on other side                 must then 
transform as:

●

● Gauge fields therefore obey complex-conjugate BCs.



  

The Two-Flavor Method

● Two fermion fields on each site 
indexed by flavor index:

● BCs are:

● Periodic BCs in other dirs.

● Single U-field shared by both 
flavors, with complex conj BCs.

● Dirac op for        uses      . 



  

The One-Flavor Method
● Obtain equivalent formulation by unwrapping flavor indices 

onto two halves of doubled lattice:

● Antiperiodic boundary conditions in G-parity direction.

●    -field on first half and      -field on second half.



  

Choosing an Approach
● One flavor setup is much easier to implement. 

● However recall that we needed APBC in 2 directions for physical 
kinematics in                  calculation.

● G-parity in >1 dir using one-flavor method requires doubling the 
lattice again, which is highly inefficient.

● A second approach requires non-nearest neighbour communication:

● Also inefficient 
depending on machine 
architecture.

● Choose to implement 
two-flavor method.



  

Unusual Contractions
● Flavor mixing at boundary allows contraction of up and down 

fields:

● Interpret as boundary creating/destroying flavor (violating 
baryon number):

● Also have     -hermiticity:



  

Exploiting the Underlying Gauge-
Field Symmetry

● Quarks on flavor-1 plane interact with U field, and those on 
flavor-2 plane with U*. 

● Suggests propagators are related in some way.

● In fact, we find that:                                                                         
                                                                                            

● Relative sign due to – sign at boundary between u and d.

● Substantially simplifies contractions.

● In some cases these relations can be used to reduce the number 
of propagator inversions required.



  

Pion Correlation Functions
●     correlation function

● Now has two contractions:



  

Locality

● Theory has one too many flavors. Must take square-root of        
determinant in evolution to revert to 3 flavors.

● Determinant becomes non-local.

● Non-locality is however only a boundary effect that vanishes as   
           . With sufficiently large volumes the effect should be 
minimal.

● Estimate size of effect?  

   - Staggered ChPT?

   - Observe effect of changing from                               to              
                                   for which                   is local                     
(=                       )?              



  

Charged Kaon Correlator
●      analogue:  

● 2-point function also has 4 contractions:                    (flavour 
indices                               ):

● If we make the masses of the           and          doublets the same 
this is just the      correlation function but with the opposite sign 
between the contractions.

● Periodicity of spatial dependence appears to arise due to some 
cancellation between the two contractions.
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